Custom modules in C++¶
Modules¶
Godot allows extending the engine in a modular way. New modules can be created and then enabled/disabled. This allows for adding new engine functionality at every level without modifying the core, which can be split for use and reuse in different modules.
Modules are located in the modules/
subdirectory of the build system.
By default, two modules exist, GDScript (which, yes, is not part of the
core engine), and the GridMap. As many new modules as desired can be
created and combined, and the SCons build system will take care of it
transparently.
What for?¶
While it’s recommended that most of a game is written in scripting (as it is an enormous time saver), it’s perfectly possible to use C++ instead. Adding C++ modules can be useful in the following scenarios:
- Binding an external library to Godot (like Bullet, Physx, FMOD, etc).
- Optimize critical parts of a game.
- Adding new functionality to the engine and/or editor.
- Porting an existing game.
- Write a whole, new game in C++ because you can’t live without C++.
Creating a new module¶
Before creating a module, make sure to download the source code of Godot and manage to compile it. There are tutorials in the documentation for this.
To create a new module, the first step is creating a directory inside
modules/
. If you want to maintain the module separately, you can checkout
a different VCS into modules and use it.
The example module will be called “sumator”, and is placed inside the
Godot source tree (C:\godot
refers to wherever the Godot sources are
located):
C:\godot> cd modules
C:\godot\modules> mkdir sumator
C:\godot\modules> cd sumator
C:\godot\modules\sumator>
Inside we will create a simple sumator class:
/* sumator.h */
#ifndef SUMATOR_H
#define SUMATOR_H
#include "reference.h"
class Sumator : public Reference {
OBJ_TYPE(Sumator,Reference);
int count;
protected:
static void _bind_methods();
public:
void add(int value);
void reset();
int get_total() const;
Sumator();
};
#endif
And then the cpp file.
/* sumator.cpp */
#include "sumator.h"
void Sumator::add(int value) {
count+=value;
}
void Sumator::reset() {
count=0;
}
int Sumator::get_total() const {
return count;
}
void Sumator::_bind_methods() {
ObjectTypeDB::bind_method("add",&Sumator::add);
ObjectTypeDB::bind_method("reset",&Sumator::reset);
ObjectTypeDB::bind_method("get_total",&Sumator::get_total);
}
Sumator::Sumator() {
count=0;
}
Then, the new class needs to be registered somehow, so two more files need to be created:
register_types.h
register_types.cpp
With the following contents:
/* register_types.h */
void register_sumator_types();
void unregister_sumator_types();
/* yes, the word in the middle must be the same as the module folder name */
/* register_types.cpp */
#include "register_types.h"
#include "object_type_db.h"
#include "sumator.h"
void register_sumator_types() {
ObjectTypeDB::register_type<Sumator>();
}
void unregister_sumator_types() {
//nothing to do here
}
Next, we need to create a SCsub
file so the build system compiles
this module:
# SCsub
Import('env')
env.add_source_files(env.modules_sources,"*.cpp") # just add all cpp files to the build
If you want to add custom compiler flags when building your module, you need to clone env first, so it won’t add those flags to whole Godot build (which can cause errors). Example SCsub with custom flags:
# SCsub
Import('env')
module_env = env.Clone()
module_env.add_source_files(env.modules_sources,"*.cpp")
module_env.Append(CXXFLAGS=['-O2', '-std=c++11'])
And finally, the configuration file for the module, this is a simple
python script that must be named config.py
:
# config.py
def can_build(platform):
return True
def configure(env):
pass
The module is asked if it’s ok to build for the specific platform (in this case, True means it will build for every platform).
And that’s it. Hope it was not too complex! Your module should look like this:
godot/modules/sumator/config.py
godot/modules/sumator/sumator.h
godot/modules/sumator/sumator.cpp
godot/modules/sumator/register_types.h
godot/modules/sumator/register_types.cpp
godot/modules/sumator/SCsub
You can then zip it and share the module with everyone else. When building for every platform (instructions in the previous sections), your module will be included.
Using the module¶
Using your newly created module is very easy, from any script you can now do:
var s = Sumator.new()
s.add(10)
s.add(20)
s.add(30)
print(s.get_total())
s.reset()
And the output will be 60
.
Improving the build system for development¶
So far we defined a clean and simple SCsub that allows us to add the sources of our new module as part of the Godot binary.
This static approach is fine when we want to build a release version of our game given we want all the modules in a single binary.
However the trade-of is every single change means a full recompilation of the game. Even if SCons is able to detect and recompile only the file that have changed, finding such files and eventually linking the final binary is a long and costly part.
The solution to avoid such a cost is to build our own module as a shared library that will be dynamically loaded when starting our game’s binary.
# SCsub
Import('env')
sources = [
"register_types.cpp",
"sumator.cpp"
]
# First, create a custom env for the shared library.
module_env = env.Clone()
module_env.Append(CXXFLAGS='-fPIC') # Needed to compile shared library
# We don't want godot's dependencies to be injected into our shared library.
module_env['LIBS'] = []
# Now define the shared library. Note that by default it would be built
# into the module's folder, however it's better to output it into `bin`
# next to the godot binary.
shared_lib = module_env.SharedLibrary(target='#bin/sumator', source=sources)
# Finally notify the main env it has our shared lirary as a new dependency.
# To do so, SCons wants the name of the lib with it custom suffixes
# (e.g. ".x11.tools.64") but without the final ".so".
# We pass this along with the directory of our library to the main env.
shared_lib_shim = shared_lib[0].name.rsplit('.', 1)[0]
env.Append(LIBS=[shared_lib_shim])
env.Append(LIBPATH=['#bin'])
Once compiled, we should end up with a bin
directory containing both the
godot*
binary and our libsumator*.so
. However given the .so is not in
a standard directory (like /usr/lib
), we have to help our binary find it
during runtime with the LD_LIBRARY_PATH
environ variable:
user@host:~/godot$ export LD_LIBRARY_PATH=`pwd`/bin/
user@host:~/godot$ ./bin/godot*
note: Pay attention you have to export
the environ variable otherwise
you won’t be able to play you project from within the editor.
On top of that, it would be nice to be able to select whether to compile our module as shared library (for development) or as a part of the godot binary (for release). To do that we can define a custom flag to be passed to SCons using the ARGUMENT command:
# SCsub
Import('env')
sources = [
"register_types.cpp",
"sumator.cpp"
]
module_env = env.Clone()
module_env.Append(CXXFLAGS=['-O2', '-std=c++11'])
if ARGUMENTS.get('sumator_shared', 'no') == 'yes':
# Shared lib compilation
module_env.Append(CXXFLAGS='-fPIC')
module_env['LIBS'] = []
shared_lib = module_env.SharedLibrary(target='#bin/sumator', source=sources)
shared_lib_shim = shared_lib[0].name.rsplit('.', 1)[0]
env.Append(LIBS=[shared_lib_shim])
env.Append(LIBPATH=['#bin'])
else:
# Static compilation
module_env.add_source_files(env.modules_sources, sources)
Now by default scons
command will build our module as part of godot’s binary
and as a shared library when passing sumator_shared=yes
.
Finally you can even speedup build further by explicitly specifying your shared module as target in the scons command:
user@host:~/godot$ scons sumator_shared=yes bin/sumator.x11.tools.64.so
Summing up¶
As you see, it’s really easy to develop Godot in C++. Just write your stuff normally and remember to:
- use
OBJ_TYPE
macro for inheritance, so Godot can wrap it - use
_bind_methods
to bind your functions to scripting, and to allow them to work as callbacks for signals.
But this is not all, depending what you do, you will be greeted with some surprises.
- If you inherit from Node (or any derived node type, such as Sprite), your new class will appear in the editor, in the inheritance tree in the “Add Node” dialog.
- If you inherit from Resource, it will appear in the resource list, and all the exposed properties can be serialized when saved/loaded.
- By this same logic, you can extend the Editor and almost any area of the engine.